ОСНОВНЫЕ ПАРАМЕТРЫ ПОЛЕВОГО ТРАНЗИСТОРА
Ток насыщения Iс0 в цепи стока транзистора, включённого по схеме с общим истоком, при затворе накоротко замкнутым с истоком (т. е. при Uз.и=0) — характерен лишь для полевых транзисторов с управляющим p-n-переходом.
Ток стока в рабочей точке можно определить по следующей формуле [2]:
где Uотс — напряжение отсечки.
Уравнение (1) является приближенным для характеристики передачи любого полевого транзистора (особенно с малыми напряжениями отсечки).
Напряжение отсечки Uотс — один из основных параметров, характеризующих полевой транзистор. При напряжении на затворе, численно равном напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.
Измерение истинного значения напряжения отсечки (при полном перекрытии канала) произвести довольно трудно, так как при этом приходится иметь дело с чрезвычайно малыми токами стока, к тому же зависящими от сопротивления изоляции. В справочных данных на полевые транзисторы всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП102 напряжения Uотс получены при токе стока 20 мкА, а у транзистора КП103 — при токе стока 10 мкА.
Крутизна проходной характеристики. Входное сопротивление полевых транзисторов со стороны управляющего электрода составляет 10 7 -10 9 Ом для транзисторов с p-n-переходом. Так как входные токи полевых транзисторов чрезвычайно малы, то управление током в выходной цепи осуществляется входным напряжением. Поэтому усилительные свойства полевого транзистора, как и электронных ламп, целесообразно характеризовать крутизной проходной характеристики.
Крутизна полевых транзисторов
Максимальное значение крутизны характеристики Sмакс достигается при Uз.и=0. При этом численное значение Sмакс равно проводимости канала полевого транзистора при нулевых смещениях на его электродах.
Крутизна характеристики полевых транзисторов на 1-2 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на полевом транзисторе меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.
В большинстве случаев крутизну характеристики полевых транзисторов считают частотно-независимым параметром. Поэтому быстродействие электронных схем на полевых транзисторах ограничено в основном паразитными параметрами схемы.
Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1):
где Uз.и — напряжение затвор-исток, при котором вычисляется S;
Соотношение (3) позволяет по двум известным параметрам рассчитать третий.
Пробивное напряжение. Механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор — канал. Обратное напряжение диода затвор — канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Например, у транзистора КП102 пробой наступает при суммарном напряжении между затвором и стоком, равном 30 В. Это напряжение является минимальным; фактически напряжение пробоя составляет в среднем около 55 В, а у отдельных экземпляров достигает 120 В [7].
Пробой не приводит к выходу из строя ПТ с управляющим р-n-переходом, если при этом рассеиваемая мощность не превышает допустимой. После пробоя в нормальном рабочем режиме эти транзисторы восстанавливают свою работоспособность. Это свойство транзисторов с p-n-переходом даёт им известное преимущество перед МОП-транзисторами, у которых пробой однозначно приводит к выходу прибора из строя.
Однако необходимо оговориться, что и для ПТ с р-n-переходом пробой не всегда безвреден. Степень его влияния на параметры транзистора определяется значением и продолжительностью действия тока, протекающего при этом через затвор. Так, в результате пробоя может увеличиться ток утечки затвора в нормальном режиме [7].
Динамическое сопротивление канала rк определяется выражением
Это сопротивление при Uс.и = 0 и произвольном смещении Uз.и можно выразить через параметры транзистора [2]:
При малом напряжении сток-исток вблизи начала координат ПТ ведёт себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Это остаётся справедливым даже в случае изменения полярности напряжения стока (см. рис. 4); необходимо только, чтобы напряжение на затворе было больше, чем на стоке [5].
Зависимости сопротивления канала ПТ от напряжения на затворе
Минимальное значение сопротивления канала rк0 наблюдается при Uз.и = 0: при увеличении обратного напряжения на затворе сопротивление канала нелинейно увеличивается (см. рис. 10). Значение rк0 определяется по стоковой характеристике транзистора как тангенс угла наклона касательной к кривой Iс=f(Uс) при Uз.и = 0 в точке Uс.и=0.
Полевые транзисторы. For dummies
Определение не только подтвердило наши предположения, но и продемонстрировало особенность полевых транзисторов — управление выходным током происходит посредством изменения приложенного электрического поля, т.е. напряжения. А вот у биполярных транзисторов, как мы помним, выходным током управляет входной ток базы.
Еще один факт о полевых транзисторах можно узнать, обратив внимание на их другое название — униполярные. Это значит, что в процессе протекания тока у них участвует только один вид носителей заряда (или электроны, или дырки).
Три контакта полевых транзисторов называются исток (источник носителей тока), затвор (управляющий электрод) и сток (электрод, куда стекают носители). Структура кажется простой и очень похожей на устройство биполярного транзистора. Но реализовать ее можно как минимум двумя способами. Поэтому различают полевые транзисторы с управляющим p-n переходом и с изолированным затвором.
Вообще, идея последних появилась еще в 20-х годах XX века, задолго до изобретения биполярных транзисторов. Но уровень технологии позволили реализовать ее лишь в 1960 году. В 50-х же был сначала теоретически описан, а затем получил воплощение полевой транзистор с управляющим p-n переходом. И, как и их биполярные «собратья», полевые транзисторы до сих пор играют в электронике огромную роль.
Перед тем, как перейти к рассказу о физике работы униполярных транзисторов, хочу напомнить ссылки, по которым можно освежить свои знания о p-n переходе: раз и два.
Полевой транзистор с управляющим p-n-переходом
Итак, как же устроен первый тип полевых транзисторов? В основе устройства лежит пластинка из полупроводника с проводимостью (например) p-типа. На противополжных концах она имеет электроды, подав напряжение на которые мы получим ток от истока к стоку. Сверху на этой пластинке есть область с противоположным типом проводимости, к которой подключен третий электрод — затвор. Естественно, что между затвором и p-областью под ним (каналом) возникает p-n переход. А поскольку n-слой значительно уже канала, то большая часть обедненной подвижными носителями заряда области перехода будет приходиться на p-слой. Соответственно, если мы подадим на переход напряжение обратного смещения, то, закрываясь, он значительно увеличит сопротивление канала и уменьшит ток между истоком и стоком. Таким образом, происходит регулирование выходного тока транзистора с помощью напряжения (электрического поля) затвора.
Можно провести следующую аналогию: p-n переход — это плотина, перекрывающая поток носителей заряда от истока к стоку. Увеличивая или уменьшая на нем обратное напряжение, мы открываем/закрываем на ней шлюзы, регулируя «подачу воды» (выходной ток).
Итак, в рабочем режиме полевого транзистора с управляющим p-n переходом напряжение на затворе должно быть либо нулевым (канал открыт полностью), либо обратным.
Если величина обратного напряжения станет настолько большой, что запирающий слой закроет канал, то транзистор перейдет в режим отсечки.
Даже при нулевом напряжении на затворе, между затвором и стоком существует обратное напряжение, равное напряжению исток-сток. Вот почему p-n переход имеет такую неровную форму, расширяясь к области стока.
Само собой разумеется, что можно сделать транзистор с каналом n-типа и затвором p-типа. Сущность его работы при этом не изменится.
Условные графические изображения полевых транзисторов приведены на рисунке (а — с каналом p-типа, б — с каналом n-типа). Стрелка здесь указывает направление от p-слоя к n-слою.
Статические характеристики полевого транзистора с управляющим p-n-переходом
Выходной (стоковой) называется зависимость тока стока от напряжения исток-сток при константном напряжении затвор-исток. На рисунке — график слева.
На графике можно четко выделить три зоны. Первая из них — зона резкого возрастания тока стока. Это так называемая «омическая» область. Канал «исток-сток» ведет себя как резистор, чье сопротивление управляется напряжением на затворе транзистора.
Вторая зона — область насыщения. Она имеет почти линейный вид. Здесь происходит перекрытие канала в области стока, которое увеличивается при дальнейшем росте напряжения исток-сток. Соответственно, растет и сопротивление канала, а стоковый ток меняется очень слабо (закон Ома, однако). Именно этот участок характеристики используют в усилительной технике, поскольку здесь наименьшие нелинейные искажения сигналов и оптимальные значения малосигнальных параметров, существенных для усиления. К таким параметрам относятся крутизна характеристики, внутреннее сопротивление и коэффициент усиления. Значения всех этих непонятных словосочетаний будут раскрыты ниже.
Третья зона графика — область пробоя, чье название говорит само за себя.
С правой стороны рисунка показан график еще одной важной зависимости — стоко-затворной характеристики. Она показывает то, как зависит ток стока от напряжения затвор-исток при постоянном напряжении между истоком и стоком. И именно ее крутизна является одним из основных параметров полевого транзистора.
Полевой транзистор с изолированным затвором
Такие транзисторы также часто называют МДП (металл-диэлектрик-полупроводник)- или МОП (металл-оксид-полупроводник)-транзисторами (англ. metall-oxide-semiconductor field effect transistor, MOSFET). У таких устройств затвор отделен от канала тонким слоем диэлектрика. Физической основой их работы является эффект изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Устройство транзисторов такого вида следующее. Есть подложка из полупроводника с p-проводимостью, в которой сделаны две сильно легированные области с n-проводимостью (исток и сток). Между ними пролегает узкая приповерхностнаяя перемычка, проводимость которой также n-типа. Над ней на поверхности пластины имеется тонкий слой диэлектрика (чаще всего из диоксида кремния — отсюда, кстати, аббревиатура МОП). А уже на этом слое и расположен затвор — тонкая металлическая пленка. Сам кристалл обычно соединен с истоком, хотя бывает, что его подключают и отдельно.
Если при нулевом напряжении на затворе подать напряжение исток-сток, то по каналу между ними потечет ток. Почему не через кристалл? Потому что один из p-n переходов будет закрыт.
А теперь подадим на затвор отрицательное относительно истока напряжение. Возникшее поперечное электрическое поле «вытолкнет» электроны из канала в подложку. Соответственно, возрастет сопротивление канала и уменьшится текущий через него ток. Такой режим, при котором с возрастанием напряжения на затворе выходной ток падает, называют режимом обеднения. Если же мы подадим на затвор напряжение, которое будет способствовать возникновению «помогающего» электронам поля «приходить» в канал из подложки, то транзистор будет работать в режиме обогащения. При этом сопротивление канала будет падать, а ток через него расти.
Рассмотренная выше конструкция транзистора с изолированным затвором похожа на конструкцию с управляющим p-n переходом тем, что даже при нулевом токе на затворе при ненулевом напряжении исток-сток между ними существует так называемый начальный ток стока. В обоих случаях это происходит из-за того, что канал для этого тока встроен в конструкцию транзистора. Т.е., строго говоря, только что мы рассматривали такой подтип МДП-транзисторов, как транзисторы с встроенным каналом.
Однако, есть еще одна разновидность полевых транзисторов с изолированным затвором — транзистор с индуцированным (инверсным) каналом. Из названия уже понятно его отличие от предыдущего — у него канал между сильнолегированными областями стока и истока появляется только при подаче на затвор напряжения определенной полярности.
Итак, мы подаем напряжение только на исток и сток. Ток между ними течь не будет, поскольку один из p-n переходов между ними и подложкой закрыт. Подадим на затвор (прямое относительно истока) напряжение. Возникшее электрическое поле «потянет» электроны из сильнолегированных областей в подложку в направлении затвора. И по достижении напряжением на затворе определенного значения в приповерхностной зоне произойдет так называемая инверсия типа проводимости. Т.е. концентрация электронов превысит концентрацию дырок, и между стоком и истоком возникнет тонкий канал n-типа. Транзистор начнет проводить ток, тем сильнее, чем выше напряжение на затворе. Из такой его конструкции понятно, что работать транзистор с индуцированным каналом может только находясь в режиме обогащения. Поэтому они часто встречаются в устройствах переключения.
Условные обозначения транзисторов с изолированным затвором следующие: Здесь а − со встроенным каналом n- типа; б − со встроенным каналом р- типа; в − с выводом от подложки; г − с индуцированным каналом n- типа; д − с индуцированным каналом р- типа; е − с выводом от подложки.
Статические характеристики МДП-транзисторов
Те же характеристики для транзистора с идуцированным каналом:
Экзотические МДП-структуры
Чтобы не запутывать изложение, хочу просто посоветовать ссылки, по которым о них можно почитать. В первую очередь, это всеми любимая википедия, раздел «МДП-структуры специального назначения». А здесь теория и формулы: учебное пособие по твердотельной электронике, глава 6, подглавы 6.12-6.15. Почитайте, это интересно!
Общие параметры полевых транзисторов
- Максимальный ток стока при фиксированном напряжении затвор-исток.
- Максимальное напряжение сток-исток, после которого уже наступает пробой.
- Внутреннее (выходное) сопротивление. Оно представляет собой сопротивление канала для переменного тока (напряжение затвор-исток — константа).
- Крутизна стоко-затворной характеристики. Чем она больше, тем «острее» реакция транзистора на изменение напряжения на затворе.
- Входное сопротивление. Оно определяется сопротивлением обратно смещенного p-n перехода и обычно достигает единиц и десятков МОм (что выгодно отличает полевые транзисторы от биполярных «родственников»). А среди самих полевых транзисторов пальма первенства принадлежит устройствам с изолированным затвором.
- Коэффициент усиления — отношение изменения напряжения исток-сток к изменению напряжения затвор-исток при постоянном токе стока.
Схемы включения
Как и биполярный, полевой транзистор можно рассматривать как четырехполюсник, у которого два из четырех контактов совпадают. Таким образом, можно выделить три вида схем включения: с общим истоком, с общим затвором и с общим стоком. По характеристикам они очень похожи на схемы с общим эмиттером, общей базой и общим коллектором для биполярных транзисторов. Чаще всего применяется схема с общим истоком (а), как дающая большее усиление по току и мощности. Схема с общим затвором (б) усиления тока почти не дает и имеет маленькое входное сопротивление. Из-за этого такая схема включения имеет ограниченное практическое применение. Схему с общим стоком (в) также называют истоковым повторителем. Ее коэффициент усиления по напряжению близок к единице, входное сопротивление велико, а выходное мало.
Отличия полевых транзисторов от биполярных. Области применения
- высокое входное сопротивление по постоянному току и на высокой частоте, отсюда и малые потери на управление;
- высокое быстродействие (благодаря отсутствию накопления и рассасывания неосновных носителей);
- поскольку усилительные свойства полевых транзисторов обусловлены переносом основных носителей заряда, их верхняя граница эффективного усиления выше, чем у биполярных;
- высокая температурная стабильность;
- малый уровень шумов, так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда, которое и делает биполярные транзисторы «шумными»;
- малое потребление мощности.
Где применяются полевые транзисторы? Да практически везде. Цифровые и аналоговые интегральные схемы, следящие и логические устройства, энергосберегающие схемы, флеш-память… Да что там, даже кварцевые часы и пульт управления телевизором работают на полевых транзисторах. Они повсюду, %хабраюзер%. Но теперь ты знаешь, как они работают!
ОСНОВНЫЕ ПАРАМЕТРЫ ПОЛЕВОГО ТРАНЗИСТОРА
Ток насыщения Iс0 в цепи стока транзистора, включённого по схеме с общим истоком, при затворе накоротко замкнутым с истоком (т. е. при Uз.и=0) — характерен лишь для полевых транзисторов с управляющим p-n-переходом.
Ток стока в рабочей точке можно определить по следующей формуле [2]:
где Uотс — напряжение отсечки.
Уравнение (1) является приближенным для характеристики передачи любого полевого транзистора (особенно с малыми напряжениями отсечки).
Напряжение отсечки Uотс — один из основных параметров, характеризующих полевой транзистор. При напряжении на затворе, численно равном напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.
Измерение истинного значения напряжения отсечки (при полном перекрытии канала) произвести довольно трудно, так как при этом приходится иметь дело с чрезвычайно малыми токами стока, к тому же зависящими от сопротивления изоляции. В справочных данных на полевые транзисторы всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП102 напряжения Uотс получены при токе стока 20 мкА, а у транзистора КП103 — при токе стока 10 мкА.
Крутизна проходной характеристики. Входное сопротивление полевых транзисторов со стороны управляющего электрода составляет 10 7 -10 9 Ом для транзисторов с p-n-переходом. Так как входные токи полевых транзисторов чрезвычайно малы, то управление током в выходной цепи осуществляется входным напряжением. Поэтому усилительные свойства полевого транзистора, как и электронных ламп, целесообразно характеризовать крутизной проходной характеристики.
Крутизна полевых транзисторов
Максимальное значение крутизны характеристики Sмакс достигается при Uз.и=0. При этом численное значение Sмакс равно проводимости канала полевого транзистора при нулевых смещениях на его электродах.
Крутизна характеристики полевых транзисторов на 1-2 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на полевом транзисторе меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.
В большинстве случаев крутизну характеристики полевых транзисторов считают частотно-независимым параметром. Поэтому быстродействие электронных схем на полевых транзисторах ограничено в основном паразитными параметрами схемы.
Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1):
где Uз.и — напряжение затвор-исток, при котором вычисляется S;
Соотношение (3) позволяет по двум известным параметрам рассчитать третий.
Пробивное напряжение. Механизм пробоя полевого транзистора можно объяснить возникновением лавинного процесса в переходе затвор — канал. Обратное напряжение диода затвор — канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора. Если выводы стока и истока поменять местами, то пробивное напряжение почти не изменится. Например, у транзистора КП102 пробой наступает при суммарном напряжении между затвором и стоком, равном 30 В. Это напряжение является минимальным; фактически напряжение пробоя составляет в среднем около 55 В, а у отдельных экземпляров достигает 120 В [7].
Пробой не приводит к выходу из строя ПТ с управляющим р-n-переходом, если при этом рассеиваемая мощность не превышает допустимой. После пробоя в нормальном рабочем режиме эти транзисторы восстанавливают свою работоспособность. Это свойство транзисторов с p-n-переходом даёт им известное преимущество перед МОП-транзисторами, у которых пробой однозначно приводит к выходу прибора из строя.
Однако необходимо оговориться, что и для ПТ с р-n-переходом пробой не всегда безвреден. Степень его влияния на параметры транзистора определяется значением и продолжительностью действия тока, протекающего при этом через затвор. Так, в результате пробоя может увеличиться ток утечки затвора в нормальном режиме [7].
Динамическое сопротивление канала rк определяется выражением
Это сопротивление при Uс.и = 0 и произвольном смещении Uз.и можно выразить через параметры транзистора [2]:
При малом напряжении сток-исток вблизи начала координат ПТ ведёт себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Это остаётся справедливым даже в случае изменения полярности напряжения стока (см. рис. 4); необходимо только, чтобы напряжение на затворе было больше, чем на стоке [5].
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
2. Основные параметры полевого транзистора
Начальный ток стока Iс0 – ток в цепи стока транзистора, включенного по схеме с общим истоком, при Uси,< Uс нас; Uзи=0.
Ток стока в рабочей точке (при 0 > Uзи > Uотс)можно определить по формуле
Уравнение (1) является приближенным для проходной характеристики любого полевого транзистора (особенно с малыми напряжениями отсечки).
Напряжение отсечки Uотс– один из основных параметров, характеризующих ПТ. При напряжении на затворе, численно равным напряжению отсечки, практически полностью перекрывается канал полевого транзистора, и ток стока при этом стремится к нулю.
В справочных данных на ПТ всегда указывается, при каком значении тока стока произведены измерения напряжения отсечки. Так, например, для транзисторов КП307Е напряжения Uотс= 0.5 2.5 В получены при токе стока 0.01 мА.
Крутизна проходной характеристики. Входное сопротивление полевых транзисторов со стороны управляющего электрода (затвора) составляет 10 7 10 9 Ом. Усилительные свойства полевого транзистора, как и электронных ламп, характеризуются крутизной проходной характеристики: S=∂Iс ∂Uзи, при Uси=const. Выражение для крутизны характеристики в рабочей точке ПТ получим, используя (1)
где Uзи– напряжение затвор–исток, при котором вычисляется S;
Максимальное значение крутизны характеристики Sмакс достигается при Uзи=0. При этом численное значение Sмакс равно проводимости канала ПТ при нулевых смещениях на его электродах.
Соотношение (3) позволяет по двум известным параметрам рассчитать третий. Для большинства маломощных ПТ S лежит в пределах 210 мА/В.
Крутизна характеристики полевых транзисторов на 12 порядка меньше, чем у биполярных транзисторов, поэтому при малых сопротивлениях нагрузки коэффициент усиления каскада на ПТ Кu = S Rc (Rc – сопротивление в цепи стока) меньше коэффициента усиления аналогичного каскада на биполярном транзисторе.
В большинстве случаев крутизну характеристики полевых транзисторов считают частотно-независимым параметром. Поэтому быстродействие электронных схем на ПТ ограничено в основном паразитными параметрами схемы.
Внутреннее сопротивление канала Ri определяется выражением Ri = ∂Uси∂Iс при Uзи= соnst.
Это сопротивление при Uси=0 и произвольном смещении Uзи можно выразить через параметры транзистора:
При малом напряжении исток–сток вблизи начала координат выходной характеристики ПТ ведет себя как переменное омическое сопротивление, зависящее от напряжения на затворе. Минимальное значение сопротивления канала Ri наблюдается при Uзи=0. При увеличении обратного напряжения на затворе сопротивление канала нелинейно увеличивается. Значение Ri определяется по стоковой характеристике транзистора как тангенс угла наклона касательной к кривой Iс=f(Uс) при Uз=0 в точке Ucи=0.
Для приближенных расчетов имеет место простое соотношение:
Коэффициент усиления определяется как изменение напряжения стока к вызвавшему его изменению напряжения на затворе при Ic = const:
Изменение тока стока связано с изменением напряжением на затворе и изменением напряжения на стоке
разделив на ∂Uси и с учетом (6) после несложных преобразований получим связь между тремя параметрами
Максимальные напряжения затвор–сток, затвор–исток, исток–сток. При превышении допустимых значений напряжения между электродами транзистора возможен лавинный пробой перехода затвор-канал.
Обратное напряжение диода затвор–канал изменяется вдоль длины затвора, достигая максимального значения у стокового конца канала. Именно здесь происходит пробой полевого транзистора. Лавинный пробой не приводит к выходу из строя ПТ с управляющим p–n-переходом, если он не переходит в тепловой пробой. После возвращения в нормальный рабочий режим ПТ восстанавливают свою работоспособность.
Типичные значения параметров маломощного полевого транзистора КП-303В с p–n-переходом и каналом n-типа:
Начальный ток стока Ic = 2 ÷ 5 мА при Uси = 10 В, Uзи = 0.
Напряжение отсечки Uотс = −1 ÷ − 4 В при Uси = 10 В, Ic = 10 мкА.
Крутизна проходной характеристики при Uси = 10 В, Uзи = 0, S = 2 ÷ 5 мА/В.
Внутреннее сопротивление Ri = 0,02 ÷ 0,5 Мом.
Ток утечки затвора Iз = 1 нА при Uзи = 10 В, Uси = 0.
Емкость входная Сзи не более 6 пФ.
Емкость проходная Сзс не более 2 пФ.
Максимальное напряжение затвор–сток, затвор–исток
Максимальное напряжение сток-исток Uси max = 25 В.